from typing import TYPE_CHECKING, Dict, Any, Tuple, Callable, List, Optional, IO, Union import sys from pathlib import Path from spacy import util from spacy.errors import Errors from spacy.util import registry from wasabi import Printer import tqdm if TYPE_CHECKING: from spacy.language import Language # noqa: F401 def wandb_logger_v1(project_name: str, remove_config_values: List[str] = []): try: import wandb from wandb import init, log, join # test that these are available except ImportError: err_msg = ( "The 'wandb' library could not be found - did you install " "it? Alternatively, specify the 'ConsoleLogger' in the " "'training.logger' config section, instead of the " "'WandbLogger'." ) raise ImportError(err_msg) console_logger = registry.get("loggers", "spacy.ConsoleLogger.v1") console = console_logger(progress_bar=False) def setup_logger( nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr ) -> Tuple[Callable[[Dict[str, Any]], None], Callable[[], None]]: config = nlp.config.interpolate() config_dot = util.dict_to_dot(config) for field in remove_config_values: del config_dot[field] config = util.dot_to_dict(config_dot) wandb.init(project=project_name, config=config, reinit=True) console_log_step, console_finalize = console(nlp, stdout, stderr) def log_step(info: Optional[Dict[str, Any]]): console_log_step(info) if info is not None: score = info["score"] other_scores = info["other_scores"] losses = info["losses"] wandb.log({"score": score}) if losses: wandb.log({f"loss_{k}": v for k, v in losses.items()}) if isinstance(other_scores, dict): wandb.log(other_scores) def finalize() -> None: console_finalize() wandb.join() return log_step, finalize return setup_logger def setup_table( *, cols: List[str], widths: List[int], max_width: int = 13 ) -> Tuple[List[str], List[int], List[str]]: final_cols = [] final_widths = [] for col, width in zip(cols, widths): if len(col) > max_width: col = col[: max_width - 3] + "..." # shorten column if too long final_cols.append(col.upper()) final_widths.append(max(len(col), width)) return final_cols, final_widths, ["r" for _ in final_widths] def console_logger_v2( progress_bar: bool = False, console_output: bool = True, output_file: Optional[Union[str, Path]] = None, ): """The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file. progress_bar (bool): Whether the logger should print a progress bar tracking the steps till the next evaluation pass. console_output (bool): Whether the logger should print the logs on the console. output_file (Optional[Union[str, Path]]): The file to save the training logs to. """ console_logger = registry.get("loggers", "spacy.ConsoleLogger.v3") return console_logger( progress_bar=None if progress_bar is False else "eval", console_output=console_output, output_file=output_file, ) def console_logger_v1(progress_bar: bool = False): def setup_printer( nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr ) -> Tuple[Callable[[Optional[Dict[str, Any]]], None], Callable[[], None]]: write = lambda text: print(text, file=stdout, flush=True) msg = Printer(no_print=True) # ensure that only trainable components are logged logged_pipes = [ name for name, proc in nlp.pipeline if hasattr(proc, "is_trainable") and proc.is_trainable ] eval_frequency = nlp.config["training"]["eval_frequency"] score_weights = nlp.config["training"]["score_weights"] score_cols = [col for col, value in score_weights.items() if value is not None] loss_cols = [f"Loss {pipe}" for pipe in logged_pipes] spacing = 2 table_header, table_widths, table_aligns = setup_table( cols=["E", "#"] + loss_cols + score_cols + ["Score"], widths=[3, 6] + [8 for _ in loss_cols] + [6 for _ in score_cols] + [6], ) write(msg.row(table_header, widths=table_widths, spacing=spacing)) write(msg.row(["-" * width for width in table_widths], spacing=spacing)) progress = None def log_step(info: Optional[Dict[str, Any]]) -> None: nonlocal progress if info is None: # If we don't have a new checkpoint, just return. if progress is not None: progress.update(1) return losses = [ "{0:.2f}".format(float(info["losses"][pipe_name])) for pipe_name in logged_pipes ] scores = [] for col in score_cols: score = info["other_scores"].get(col, 0.0) try: score = float(score) except TypeError: err = Errors.E916.format(name=col, score_type=type(score)) raise ValueError(err) from None if col != "speed": score *= 100 scores.append("{0:.2f}".format(score)) data = ( [info["epoch"], info["step"]] + losses + scores + ["{0:.2f}".format(float(info["score"]))] ) if progress is not None: progress.close() write( msg.row(data, widths=table_widths, aligns=table_aligns, spacing=spacing) ) if progress_bar: # Set disable=None, so that it disables on non-TTY progress = tqdm.tqdm( total=eval_frequency, disable=None, leave=False, file=stderr ) progress.set_description(f"Epoch {info['epoch']+1}") def finalize() -> None: pass return log_step, finalize return setup_printer