Delete mapper_macro_2.0.py

This commit is contained in:
gumuArnold 2025-10-16 13:34:58 +00:00
parent 94e62cc267
commit ff8588d1ec

View File

@ -1,343 +0,0 @@
# -*- coding: utf-8 -*-
"""
LibreOffice Calc Makro: NV_MASTER-Abgleich (verbessertes semantisches Matching)
Speicherort: /home/jarnold/.config/libreoffice/4/user/Scripts/python/NV Abgleich Makro/mapper_macro.py
"""
import os
import re
import json
import traceback
# ------------------------------------------------------------
# LIBRARIES & MODELS
# ------------------------------------------------------------
try:
import pandas as pd
PANDAS_AVAILABLE = True
except Exception:
PANDAS_AVAILABLE = False
try:
import spacy
# Verwende das mittlere Modell für semantische Ähnlichkeit
nlp = spacy.load("de_core_news_md")
SPACY_AVAILABLE = True
except Exception:
SPACY_AVAILABLE = False
nlp = None
try:
from rapidfuzz import fuzz
RAPIDFUZZ_AVAILABLE = True
except Exception:
RAPIDFUZZ_AVAILABLE = False
from difflib import SequenceMatcher
# ------------------------------------------------------------
# KONFIGURATION
# ------------------------------------------------------------
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
NV_MASTER_PATH = os.path.join(BASE_DIR, "NV_MASTER.ods")
LOG_FILE = os.path.join(BASE_DIR, "mapper_macro.log")
CACHE_FILE = os.path.join(BASE_DIR, "mapper_cache.json")
STOPWORDS = {"mit","ohne","der","die","das","ein","eine","und","zu","von","im","in","auf","an","als","bei","für","aus","dem","den","des","eines","einer"}
CONF_THRESHOLD = 0.70 # etwas großzügiger für semantisches Matching
# ------------------------------------------------------------
# LOGGING
# ------------------------------------------------------------
def log(msg):
"""Schreibt technische Logs ins Makroverzeichnis."""
try:
with open(LOG_FILE, "a", encoding="utf-8") as f:
f.write(msg.strip() + "\n")
except Exception:
pass
log("Makro gestartet")
# ------------------------------------------------------------
# CACHE
# ------------------------------------------------------------
try:
if os.path.exists(CACHE_FILE):
with open(CACHE_FILE, "r", encoding="utf-8") as f:
CACHE = json.load(f)
else:
CACHE = {}
except Exception:
CACHE = {}
# ------------------------------------------------------------
# TEXTNORMALISIERUNG & LEMMATISIERUNG
# ------------------------------------------------------------
def normalize_text(s):
if not s:
return ""
s = str(s).strip().lower()
s = re.sub(r"[\(\)\[\]\"'\\;:\?!,\.]", "", s)
s = re.sub(r"\s+", " ", s)
return s
lemma_cache = {}
def lemmatize_term(term):
t = normalize_text(term)
if t in lemma_cache:
return lemma_cache[t]
if SPACY_AVAILABLE and nlp:
try:
doc = nlp(t)
lemma = " ".join([token.lemma_ for token in doc])
except Exception:
lemma = t
else:
lemma = t
lemma_cache[t] = lemma
return lemma
# ------------------------------------------------------------
# NV_MASTER LADEN
# ------------------------------------------------------------
def build_norm_index(nv_path):
norm_dict = {}
lemma_index = {}
if not PANDAS_AVAILABLE:
log("Pandas nicht verfügbar NV_MASTER kann nicht geladen werden.")
return norm_dict, lemma_index
try:
sheets = pd.read_excel(nv_path, sheet_name=None, engine="odf")
except Exception as e:
log(f"Fehler beim Laden von NV_MASTER: {e}")
return norm_dict, lemma_index
for sheet_name, df in sheets.items():
if str(sheet_name).strip().lower() == "master":
continue
df = df.fillna("")
cols = [str(c).strip().lower() for c in df.columns]
id_col = next((df.columns[i] for i, c in enumerate(cols) if "id" in c), df.columns[0])
word_col = next((df.columns[i] for i, c in enumerate(cols) if "wort" in c or "vokabel" in c), df.columns[-1])
current_parent_id = None
for _, row in df.iterrows():
id_val = str(row[id_col]).strip()
word_val = str(row[word_col]).strip()
if id_val:
current_parent_id = id_val
if not word_val:
continue
norm_name = normalize_text(word_val)
lemma = lemmatize_term(word_val)
entry = {"Name": word_val, "ID": current_parent_id or "", "Sheet": sheet_name}
norm_dict.setdefault(norm_name, []).append(entry)
lemma_index.setdefault(lemma, []).append(entry)
log(f"NV_MASTER geladen: {sum(len(v) for v in norm_dict.values())} Begriffe.")
return norm_dict, lemma_index
# ------------------------------------------------------------
# SCORING: FUZZY + SEMANTISCH
# ------------------------------------------------------------
def fuzzy_score(a, b):
if RAPIDFUZZ_AVAILABLE:
try:
return fuzz.token_set_ratio(a, b) / 100.0
except Exception:
return 0.0
else:
return SequenceMatcher(None, a.lower(), b.lower()).ratio()
def semantic_similarity(a, b):
if not SPACY_AVAILABLE or not hasattr(nlp.vocab, "vectors"):
return 0.0
try:
doc_a, doc_b = nlp(a), nlp(b)
if doc_a.vector_norm and doc_b.vector_norm:
return float(doc_a.similarity(doc_b))
return 0.0
except Exception:
return 0.0
def combined_score(a, b):
sf = fuzzy_score(a, b)
ss = semantic_similarity(a, b)
return max(sf, ss)
# ------------------------------------------------------------
# MATCHING & VORSCHLÄGE
# ------------------------------------------------------------
def get_suggestions_for_term(term_lemma, norm_dict, lemma_index, top_n=3, threshold=CONF_THRESHOLD):
candidates = []
for key_lemma, entries in lemma_index.items():
score = combined_score(term_lemma, key_lemma)
if key_lemma.startswith(term_lemma):
score = min(score + 0.05, 1.0)
if score >= threshold:
for e in entries:
candidates.append((score, e["Name"], e["ID"]))
for norm_key, entries in norm_dict.items():
score = combined_score(term_lemma, norm_key)
if norm_key.startswith(term_lemma):
score = min(score + 0.05, 1.0)
if score >= threshold:
for e in entries:
candidates.append((score, e["Name"], e["ID"]))
candidates.sort(key=lambda x: x[0], reverse=True)
seen, results = set(), []
for score, name, id_ in candidates:
key = (name.lower(), id_.lower() if id_ else "")
if key in seen:
continue
seen.add(key)
results.append({"score": score, "name": name, "id": id_})
if len(results) >= top_n:
break
return [f'{r["name"]} ({r["id"]})' if r["id"] else r["name"] for r in results]
def map_term_with_indexes(term, norm_dict, lemma_index):
term_norm = normalize_text(term)
term_lemma = lemmatize_term(term)
if term_lemma in CACHE:
return CACHE[term_lemma]["hits"], CACHE[term_lemma]["suggestions"], CACHE[term_lemma]["ids"]
hits, suggestions, ids = [], [], []
if term_norm in norm_dict:
for e in norm_dict[term_norm]:
hits.append(e["Name"])
if e["ID"]:
ids.append(e["ID"])
if not hits and term_lemma in lemma_index:
for e in lemma_index[term_lemma]:
hits.append(e["Name"])
if e["ID"]:
ids.append(e["ID"])
suggs = get_suggestions_for_term(term_lemma, norm_dict, lemma_index, top_n=3, threshold=CONF_THRESHOLD)
filtered_suggs = []
for s in suggs:
s_clean = normalize_text(s.split(" (")[0])
if s_clean not in [normalize_text(h) for h in hits]:
filtered_suggs.append(s)
suggestions = filtered_suggs
def uniq(seq):
seen = set()
out = []
for x in seq:
if x not in seen:
seen.add(x)
out.append(x)
return out
hits, suggestions, ids = uniq(hits), uniq(suggestions), uniq(ids)
CACHE[term_lemma] = {"hits": hits, "suggestions": suggestions, "ids": ids}
log(f"TERM: {term} | HITS: {hits} | SUGGS: {suggestions}")
return hits, suggestions, ids
# ------------------------------------------------------------
# HAUPTMAKRO
# ------------------------------------------------------------
def run_mapper_macro():
try:
doc = XSCRIPTCONTEXT.getDocument()
sheet = doc.CurrentController.ActiveSheet
except Exception as e:
log(f"Fehler beim Zugriff auf Dokument: {e}")
return
norm_dict, lemma_index = build_norm_index(NV_MASTER_PATH)
if not norm_dict:
log("Fehler: NV_MASTER leer oder nicht gefunden.")
return
try:
cursor = sheet.createCursor()
cursor.gotoStartOfUsedArea(False)
cursor.gotoEndOfUsedArea(True)
used = cursor.getRangeAddress()
except Exception as e:
log(f"Cursor-Fehler: {e}")
return
header_row = 0
objekt_col = None
for c in range(0, used.EndColumn + 1):
val = str(sheet.getCellByPosition(c, header_row).String).strip().lower()
if val == "objektbeschreibung":
objekt_col = c
break
if objekt_col is None:
log("Keine Spalte 'Objektbeschreibung' gefunden.")
return
existing = {}
for c in range(0, used.EndColumn + 1):
h = str(sheet.getCellByPosition(c, header_row).String).strip()
if h == "Norm_Treffer": existing["Norm_Treffer"] = c
if h == "Norm_Vorschlag": existing["Norm_Vorschlag"] = c
if h == "Norm_ID": existing["Norm_ID"] = c
last_col = used.EndColumn
for name in ["Norm_Treffer", "Norm_Vorschlag", "Norm_ID"]:
if name not in existing:
last_col += 1
existing[name] = last_col
sheet.getCellByPosition(last_col, header_row).String = name
GREEN, YELLOW, RED = 0xADFF2F, 0xFFD700, 0xCC0000
norm_tr_col, norm_sug_col, norm_id_col = existing["Norm_Treffer"], existing["Norm_Vorschlag"], existing["Norm_ID"]
rows = 0
for r in range(header_row + 1, used.EndRow + 1):
txt = str(sheet.getCellByPosition(objekt_col, r).String).strip()
if not txt:
continue
terms = [t.strip() for t in re.split(r",|\s+", txt) if t.strip() and t.lower() not in STOPWORDS]
row_hits, row_sugs, row_ids, any_unmapped = [], [], [], False
for term in terms:
hits, sugs, ids = map_term_with_indexes(term, norm_dict, lemma_index)
if hits: row_hits.extend(hits)
if sugs: row_sugs.extend(sugs)
if ids: row_ids.extend(ids)
if not hits and not sugs: any_unmapped = True
def uniq(seq):
seen = set()
out = []
for x in seq:
if x not in seen:
seen.add(x)
out.append(x)
return out
row_hits, row_sugs, row_ids = uniq(row_hits), uniq(row_sugs), uniq(row_ids)
sheet.getCellByPosition(norm_tr_col, r).String = " | ".join(row_hits)
sheet.getCellByPosition(norm_sug_col, r).String = " | ".join(row_sugs)
sheet.getCellByPosition(norm_id_col, r).String = " | ".join(row_ids)
obj_cell = sheet.getCellByPosition(objekt_col, r)
sug_cell = sheet.getCellByPosition(norm_sug_col, r)
tr_cell = sheet.getCellByPosition(norm_tr_col, r)
if any_unmapped:
obj_cell.CellBackColor = RED
elif row_hits:
tr_cell.CellBackColor = GREEN
if row_sugs:
sug_cell.CellBackColor = YELLOW
rows += 1
with open(CACHE_FILE, "w", encoding="utf-8") as f:
json.dump(CACHE, f, ensure_ascii=False, indent=2)
log(f"Makro abgeschlossen, {rows} Zeilen verarbeitet.")
g_exportedScripts = (run_mapper_macro,)